The anuran tarsus

Marissa Fabrezi ${ }^{1}$
CONICET, Museo de Ciencras Naturales, Facultad de Crencias Naturales, Universidad Nacional de Salta, Mendoza 2, 4400 Salta, Argenuna

Abstract

The structure of the tarsus in adult specimens and larval sequences in different famillies of anurams are analyzed, in order to establish an overall concept of the diversity of this character in the group. Ontogenetic analyssis has made it possible to confirm the hypothesis of the origination of distal tarsals and metatarsals along the fibular axds, whereas the element Y and the prehallux originate along the tiblal axis, with no differentiation into intermedium nor centralia. On the basis of ontogenetic Information, it can be established that the plesiomorphic condition of the tarsus in anurans is that In which the ends of the tiblale and fibulare are fused, and there are three free distal tarsals, the element Y and the prehallux. Apomorphic states can be recognized by different types of fusion between proxdmal and distal elements, or by a reduction of distal elements.

Introduction

The anuran tarsus is one of the most characteristic structures of the group, due to its degree of specialization. Although both anatomical and functional studies have been carried out for many years, there is still debate over tarsus homologies, the number of the embryonic elements making up the structure, and the evolution of the latter in anurans

Howes \& RIDEWOOD (1888) described four different tarsal morphologies in various species of extant anurans from a strictly anatomical point of view. Laurent (1940, 194la-b, 1942), Liem (1970) and Drewes (1984) described two of these in the Arthroleptidae, Ranidae and Rhacophoridae. All these authors recognized differences in the distal portions of the tarsus. Andersen (1978) presented an hypothesis of tarsal evolution in anurans based on five patterns that include variations in both proximal and distal areas of the tarsus. The above-mentioned studies rest on observations carried out on postmetamorphic specimens, and all concur in pointing out a tendency toward reduction of the number of individual elements.

Holmgren (1933), Trueb (1973) and Jarosova (1974) refer to fusion of the intermedium with the proximal end of the tibiale, whereas up to four embryonic centralia fuse with the distal tarsals during development These hypotheses are very different from those put forward by other authors (Howes \& Ridewood, 1888; Shubin \& Alberch, 1986), who claim that there is no trace of the intermedium during anuran limb ontogeny.

[^0]According to Howes \& Ridewoon (I888), the only central element recognized in the tarsus corresponds to the proximal element of the prehallux, whereas Shubin \& Alberch (1986) denied the existence of centralia in the anuran autopodium. With regard to the distal tarsals, there is concidence in the descriptions which indicate the presence of the distal tarsals 3,2 and 1, and there is evidence of appearance of discrete cartilaginous foci of the distal tarsals 5 and 4 during development in some species.

All this somewhat controversial information leads to the conclusion that it is necessary to investigate the tarsus in this group in greater depth.

The present work analyzes the tarsus in specimens from different families, in order to obtain an overall view of the structure and distribution of adult morphology. Furthermore, some sequences of tarsal development are analyzed, in the hope of dispelling some doubts raised by the information currently available.

Material and method

The adult specimens and larvae listed in Appendıx were analyzed. Ontogenetic series were staged according to Gosner (1960). All the sample specimens were prepared according to the technique proposed by Wassersug (1976) for whole preparations. The tadpole hindlimbs were dissected and placed on slides.

Observations, drawings and photomicrographs of whole mounts were made using stereo-microscope with camera lucida and darkfield microscope.

Tarsus descriptions were made using the terminology in Shubin \& Alberch (1986).
The following abbreviations were used in figures. d1, distal tarsal 1; d2, distal tarsal 2; d3, dıstal tarsal 3, Fe, femur, F, fibula; F1, fibulare; LO, plate osseous; Ph, prehallux; s? , sesamoid; T, tıbia; Ti, tibiale; Y, element Y; I, metatarsal I; II, metatarsal II; III, metatarsal III; IV, metatarsal IV; V, metatarsal V.

Results

Arthroleptidae (Astylostcrninae, Arthroleptinae and Hyperolinae, sensu Laurent, 1986)

Adult specimens of the genera Afrixalus, Arthroleptis, Astylosternus, Cardioglossa, Hyperolus, Kussma, Leptopelis, Phlyctimantis, Opisthothylax and Schoutedenella were analyzed.

Cardioglossa cyaneospila and C leucomystax were observed to have the tibiale and fibulare fused at the ends, the distal tarsals 3,2 and 1 articulating with the metatarsals III, II and I, and the element Y and the prehallux both present. The prehallux is formed of one element in C. cyaneospila and three elements in C. leucomystax (fig. I A).

Fig. 1. (A) Dorsal view of right foot of Cardloglossa leucompstax. (B) Dorsal view of nght foot of Bufo granulosus. (C) Dorsal view of right foot of Dendfobates pictus. (D) Dorsal vew of right foot of Pleurodema cinerea.

In the remaining members of this family, the structure of the tarsus was characterized by the fusion of the ends of the tibiale and fibulare, the distal tarsal 3-2 articulating with the metatarsals III and II, the distal tarsal 1 articulating with the metatarsals II and I, and the presence of the element Y and the prehallux In Afrixalus quadrivitatus, Arthroleptus poecilonotus, A. stenodactylus, A. variabilis, Leptopelis christyi and Opisthothylax sp., the prehallux consists of a single element; in the remaining species it consists of two elements.

Bufonidae

Adult specimens of the genera Atelopus, Bufo and Melanophryniscus were analyzed The tarsus is formed of the tibiale and fibulare fused at the ends, the distal tarsal 3-2 articulating with the metatarsals III and II, the distal tarsal 1 articulating with the metatarsals II and I, the element Y and the prehallux. The prehallux consists of one element in Melanophryniscus r. rubriventris, two elements in Atelopus pachyrhinus and three elements in Bufo granulosus (fig. 1 B).

Dfndrobatidae

The tarsus of an adult specimen of Dendrobates pictus (fig. 1 C) was analyzed, and found to present fusion of the ends of the tibiale and fibulare, the distal tarsal 3-2 articulating with the metatarsals III and II, the distal tarsal 1 articulating with the metatarsal II and I, the element Y, and the prehallux formed of two elements.

Hemisotidae

The tarsus of an adult specimen of Hemisus g guineensis was analyzed. It presented the tibiale and fibulare fused at the ends, the distal 3-2 articulating with the metatarsals III and II, the distal tarsal I articulating with the metatarsals II and I, the element Y, and the prehallux formed of one element.

Hylidae

Adult specimens of the genera Argenteohyla, Gastrotheca, Hyla, Phyllomedusa, and Samax (Duellman \& Wiens, 1992) were analyzed, together with larval preparations of Hyla pulchella andina and Phyllomedusa sauvagit (fig. 2 A).

The tarsus of all the adult hylids analyzed was formed of the tiblale and fibulare fused at the ends, the distal tarsal 3-2 articulating with the metatarsals III and II, the distal tarsal I arficulating with the metatarsals II and I, the element Y and the prehallux The number of pieces in the prehallux varied according to the species: two in Argenteohyla siemersii, Scmax nasica and Phyllomedusa hypochondrialis, and three in the remamng species

In the preparations of the larval limbs from Hyla pulchella andina and Phyllomedusa sauragii, it was observed that the fibulare differentiates earlier than the tubale. Together

Fig. 2. - (A) Early stage of the tarsus development in Phyllomedusa sazvagit, in which rudiments of tubiale, fibulare, metatarsals IV, III and V and the distal tarsal 3 condensation are present. (B) Advanced stage of the tarsus development in Leptodactytus of gracils, in which distal tarsal 3, element Y, prehallux, five metatarsals and fused tibuale and fibulare are present.
with the two proximal tarsal rudiments (tibiale and fibulare), the metatarsal IV rudiment is also present. In the next stage, the metatarsals V and III appear, and a proliferation at the end of the fibulare becomes apparent, from which the cartulage condensation corresponding to the distal tarsal 3 arises. Later, when the metatarsal 11 and 1 rudiments are formed, the element Y condensation and the begmning of fusion between the tibiale and fibulare can be seen. Finally, the distal tarsal 2 differentiates as a continuation of the distal tarsal 3 , while the distal tarsal I and the prehallux elements differentiate in a distal direction.

Leiopelmatidade

Only two larval specimens of Ascaphus truei with ages corresponding to stages 39 and 42 of Gosner (1960) were analyzed. As these stages are advanced in regard to lumb development, no embryonic connections between the elements, such as those described by Shubin \& Alberch (1986), were observed.

The stage 39 tadpole showed a cartilaginous tibiale and fibulare, fused at their ends; five distal tarsals (1, 2, 3, 4 and 5) dimnishing in size in an anterior direction; the element Y located between the distal end of the tibiale; and a small condensation corresponding to the proximal segment of the prehallux. Each of the distal tarsals is related to the corresponding metatarsal.

The stage 42 tadpole showed the fusion of distal tarsals 5 and 4 with the distal end of fibulare (this can be deduced from the elongation of the distal end of the fibulare which
exceeds the tibiale in length). The metatarsals V and IV articulated directly with the end of the fibulare, while the metatarsals III, II and I maintained their relationship with the corresponding distal tarsals. The element Y was larger in size than the distal tarsals and supported the proximal element of the prehallux, made up of the two elements.

The morphology described for the stage 42 tadpole is the same as that described by Andersen (1978) for an adult of Ascaphus truei.

Leptodactylidae

Adult specimens of the genera Eleutherodactylus, Hylodes, Leptodactylus, Odontophrynus, Pleurodema and Syrrhopus were analyzed, as were ontogenetic series of Leptodactylus, Odontophrymus and Pleurodema.

The tarsal morphology of the adults is similar in all these species, with variations observed at the level of the number of prehallux elements The tibiale and fibulare are fused at the ends, the metatarsals V and IV articulate directly with the end of the fibulare, the distal tarsal 3-2 articulates with the metatarsals III and II, the distal tarsal 1 artuculates with the metatarsals II and I, and the element Y and the prehallux are present. The prehallux in Leptodactylus podicipinus, Pleurodema conerea (fig. 1 D) and Syrrhopus nivicolmae is formed of a single element. In Eleutherodactylus discoidatis, Hylodes nasus, Leptodactylus chaquensis, L. fuscus, L. graculs and Odontophrynus occidentalis, the prehallux is formed of two elements. In the rest of the species three elements were observed.

The sequences of tarsal development analyzed in the species of Leptodactyldate studied (fig. 2 B) is similar to that described for the Hylidae.

Microhylidae

Adult specimens of the genera Breviceps, Dermatonotus (fig. 3 A), Elachistocleis, Gastrophryne, and Phrynomantis (DuboIs, 1988) were analyzed, as were ontogenetic series of the limb in Dermatonotus muelleri.

Observation of the tarsus in these species showed the tibiale and fibulare fused at the ends, the distal tarsal $3-2$ articulating with the metatarsals III and II, the distal tarsal I articulating with the metatarsals II and I, the element Y and the prehallux. In all of them the prehallux consisted of two pieces.

The only difference in limb development observed in Dermatonotus muelleri was that the fusion of the ends of the tibiale and fibulare takes place prior to differentiation of the distal tarsals and of the element Y .

Myobatrachidae

Adult specimens of the genera Crima (fig. 3 B), Limnodynastes and Neobatrachus were analyzed. The tarsal morphology observed is characterized by the presence of: tibiale and fibulare fused at the ends; metatarsal V and IV articulating directly with the end of the
fibulare; distal tarsal 3-2 articulating with metatarsal III and II; distal tarsal 1 articulating with metatarsals II and I; element Y and prehallux, this last formed of two elements. The distal segment of the prehallux in Neobatrachus pictus is greatly developed.

Pelodytidae

An adult specimen of Pelodytes punctatus (fig. 3 C) was analyzed. It has the tibiale and fibulare fused along their entire length, although a groove remains between the two elements, reveahng ther dual nature Present are the distal tarsals 3. 2 and 1, which articulate with the corresponding metatarsals, whereas the metatarsals V and IV articulate with the distal end of the fibulare. The distal tarsal 3 is the largest of the set. The element Y supports the prehallux, formed of three pieces. Howes \& Ridewood (1888) describe the same tarsal morphology for this species, and Talavera (1985) analyzed its development. This last author observed that the specialization in Pelodytes punctatus includes not only the complete fusion of tibiale and fibutare, but also an early beginning of the ossification and fusion of these elements, a characteristic notably different from any obseryed in other species.

Pipidae

Adult specimens of the genera Xenopus, Hymenochurus and Pipa were analyzed.
In Xenopus, the tibiale and fibulare are fused at the ends and they are of equal length. The metatarsals V and IV articulate directly with the distal end of the fibulare. There are two distal tarsals: the distal tarsal 3-2 which articulates wth the metatarsals III and II; and the distal tarsal 1 - somewhat smaller in size - which articulates with the metatarsals II and I. There is the element Y related to the tibiale, the distal tarsal 1 and the metatarsal I, and supporting the prehallux formed of two elements. Howes \& Ridewood (1888) describe this same morphology in Xenopus laevis, the only difference being their observation of the prehallux with three elements.

In Hymenochirus boettgeri camerumensis (fig. 3 D), the tibiale and fibulare are completely fused, with the small fissure between them. The metatarsals V and IV articulate directly with this osseous complex. The distal tarsals $3-2$ and 1, and the element Y , are observed to be the same as in Xenopus, but no elements which can be assigned to the prehallux are evident. Five or six sesamoids are present in plantar position between tibiale-fibulare and metatarsals.

In Pipa, the ends of the tibiale and fibulare are jomed by a thin ossification. In dorsal view, the five metatarsals are articulated to a broadened osseous plate. In the ventral view, there are osseous condensations between the tibiale-fibulare and the metatarsals. four in Pipa parva (fig. 4 A) and six in P carvalhoi, with no prehallux present. Howes \& Ridewood (1888) observed a similar tarsal structure in P. pipa, where the metatarsals V and IV articulated directly with the end of the fibulare, while the remaining metatarsals articulated with the osscous plate (which is preaxial in this species). Three osseous condensations were observed in ventral view. The above-mentioned authors considered

Fig 3. - (A) Dorsal view of right foot of Dermatonotus muellert. (B) Dorsal view of right foot of Crinia stgnfera. (C) Dorsal view of right foot of Pelodyles punctatus. (D) Dorsal view of night foot of Hymenochurus boettgerl comerunensis.

Fig. 4. - (A) Dorsal view of mght foot of Pupaparva, (B) Dorsal vew of right foot of Chiromantis rufescens. (C) Dorsal vew of right foot of Phrynobatrachus petropedetoides. (D) Dorsal view of right foot of Rhinoderma darwimi.
these condensations to correspond to the distal tarsal 3-2, the element Y and a sesamoid. It is difficult to interpret the homologies of these structures in Pipa, because their tarsal-metatarsal union is highly altered. The size of the bony dorsal plate varies, as do the number of osseous condensations, but it may be that both the plate and these condensations have no relation to the original tarsal elements, and are really sesamoids, similar to those observed in Hymenochurus boettgeri camerunensis. However, it will require a closer study of all aspects of the development and variation of the tarsal structure in these species to be carried out before any feasible interpretation can be made.

Pseudidare

Adult specimens of the genera Lysapsus and Pseudis were analyzed. They were observed to have a tarsus made up of tibiale and fibulare fused at the ends, the distal tarsal 3-2 articulating with the metatarsal III and II, the distal tarsal 1 articulating with the metatarsals II and I, the element Y and the prehallux. The prehallux in both genera was composed of two elements, the distal one being very developed.

Ranoidae (Mantellidae, Phrynobatrachidae and Ranidae, sensu Dubois, 1992)
Adults specimens of the genera Aubria, Chrromantis, Hoplobatrachus, Phrynobatrachus and Ptychadena were analyzed.

Most of the Ranoidae examined present a similar tarsal morphology, consisting of the tibiale and fibulare fused at the ends, the distal tarsal 3-2 articulating with the metatarsals III and II, a very small distal tarsal 1 articulating with the metatarsals II and I, the element Y and the prehallux.

The presence of a free distal tarsal 1 is not observed in Chiromantis rufescens (fig 4 B), Phrynobatrachus natalensis and P asper. Its absence can be interpreted as a loss, or as a fusion with some other element, probably the element Y.

There are variations in the number of pieces in the prehallux. This is formed of one element in Phrynobatrachus acutirostris and P. petropedetoides (fig. $4 C$), and in the remaining species of two elements - with the exception of Aubria subsigillata, in which it is formed of three.

Rhinodermatidae

One adult specimen of Rhinoderma darwmi (fig. 4 D) was analyzed. It presented a tarsus consisting of the tibiale and fibulare fused at the ends, the distal tarsal 3-2 articulating with the metatarsals III and II, the distal tarsal I articulating with the metatarsals II and I, the element Y, and the prehallux formed of two pleces.

DISCUSSION

As pointed out in the introduction, the existing information on tarsal development in the anurans is contradictory.

Shubin \& Alberch (1986) have proposed a tentative development model for the anuran limb. This model explans the differentiation of autopodium elements in a proximal-distal and posterior-anterior direction on the basis of two cartilaginous series (postaxial and preaxial), in which processes such as branching, segmentation and de novo condensation are seen (fig. 5). The postaxial series (corresponding to fibula) segments to the fibulare; at the distal end of the fibulare there is an area of differentiation of distal tarsal 4 and metatarsal IV (distal tarsal 5 being formed by de novo condensation) Distal tarsal 4 does not segment from the end of fibulare, but branches to form distal tarsal 3. Distal tarsal 3 branches and segments to form metatarsal III and distal tarsal 2, metatarsal II arising from the last. Distal tarsal 1 could be formed by de novo condensation as could metatarsal I - or could be cleaved from distal tarsal 2 . On the other hand, the preaxial series (corresponding to the tibia) segments form the tibiale, the element Y and the prehallux. According to the above-mentioned authors, in the tetrapods, the intermedum differentiates from the branching end of the fibula together with the fibulare, while the centralia segments from branches of the intermedium. This does not occur in the anurans.

The results of the present work on tarsal development in various species of anurans confirm the model proposed by Shubin \& Alberch (1986), as no trace of cartilage condensation which could be attributed to the intermedium and/or centrala were observed. The differentiation of the preaxial elements - tibiale, element Y and prehallux - in a proximal-distal sequence has been confirmed. A description has also been given, in a proximal-distal and postenor-antenor sequence, of the differentiation of the postaxial elements: namely, fibulare, distal tarsals and metatarsal V to I.

Although the results obtained berein support the hypothesis of the non-existence of intermedium and centralia during tarsal development in the anurans, they are not exhaustive enough to entirely negate the results obtained by other authors (especially Jarosova, 1974). This last author made a careful analysis of the hindlimb development of Xenopus laevis and Discoglossus pictus by studying histological preparatıons of larval limbs, in which she observed the presence of these condensations.

An analysis of the development patterns shows that the individual tarsals which can be recognized in the early stages of hindlimb differentiation are the tibiale, the fibulare, the distal tarsals 3, 2 and 1, the element Y and the prehallux The progressive fusion of some of these can be vernied in the later ontogenetic stages of some species. This leads to the supposition that the plesiomorphic condition of the tarsal structure is that of the initial stages of limb differentiation, and is that presented by the adult forms of the Leiopelmatidae, Discoglossidae (Howes \& Ridewood, 1888, Andersen, 1978), Pelobatidae (Howes \& Ridewood, 1888; Andersen, 1978) and two species of Cardioglossa.

Subsequent to this plesiomorphic condition of the tarsus, in which all the elements can be individually recognized, progressive fusions between them take place during the

Fig. 5, - Schematic sequence of the tarsus development in Xenopus laevos (from Shumin \& Alberch, 1986), reduced to patterns of branching, segmentation and de novo condensation.
development, leading to the appearance of apomorphic states in different directions that are characteristic of the adults. In one direction, as observed in the Pelodytidae, there is complete fusion of the tubiale and of the fibulare, which is further associated with other specializations (TALAVERA, 1985). Alternatively, in another direction arises the apomorphic state represented by fusion of the distal tarsals 3 and 2.

This last condtion is amply distributed throughout the remanng families, including Pelobatidae (Howes \& Ridewood, 1888; Linch, 1973; Andersen, 1978; Dlellman \& Trueb, 1985)

In the Pipoidea, the Xenopus tarsus represents the generalized condition from which at least two apomorphic, apparently independent, states will emerge. (1) In the Pipa species analyzed in this work, and in that of Howes \& Ridewood (1888), the replacement of the distal tarsals, of the element Y and of the prehallux by a complex formed of an osseous plate and a set of sesamoids has been observed. (2) In Hymenochirus boettgeri camerunensss, the condition of the fused tibiale and fibulare and reductions of the prehallux elements (with the distal tarsals $3-2$ and I and the element Y preserved, as in Xenopus), with sesamoids associated, is present. Another state observed in the tarsal structure of Pipoidea is that described by Andersen (1978) as found in Rhunophrynus dorsulis, in which only the tibiale and fibulare are preserved as tarsal elements.

The morphology described for the majority of the Myobatrachidae species (LyNCH, 1973; Andersen, 1978; Gollmann, 1991) is similar. However, in hybrid populations of Geocrinia laevis and Geocrinia victoriuna (Gollmann, 1991), there are numerous variations in the shape and number of tarsal elements. These include complete fusions (with or without signs of suturng) between distal tarsals, hypertrophy of the element Y, the appearance of accessory elements, and so on. In some cases these variations are symmetric.

In the Brachycephalidae, Bufonidae, Centrolenidae, Hylidae, Leptodactylidae, Microhylidae, Pseudidae and Rhinodermatidae, the presence of three free distal tarsals has been mentioned only for the Rhinodermatidae by Lynch (1971) and Duellman \& Trueb (1985). This information is different from that obtaned from analysis of the Rhinoderma darwinit tarsus in the present work and in that of Andersen (1978). According to the results here given, the condition of the tarsus in these families includes the presence of the tibiale and fibulare fused at the ends, the distal tarsals 3-2 and 1, the element Y and the prehallux (with a variable number of elements). According to reference data, two independent apomorphic states can emerge from this condition, as shown by complete fusion of tibiale and fibulare occurring in Centrolendae (Lynch, 1973; Andersen, 1978; Duellman \& Trueb, 1985) and Geobatrachus (Duellman \& Trueb, 1985).

Drewes (1984) analyzed the tarsus in Ranoidea and recognized the following character states' (0) distal tarsals not fused; Leiopelmatidae, Discoglossidae and Pelodytes; (1) distal tarsals 3 and 2 fused; all Ranoidea except Hyperoliinae; (2) distal tarsals not fused (paedomorphic); Hyperoliinae.

This author established the polarity in the $0 \rightarrow 1 \rightarrow 2$ direction. Furthermore, he recognized other states in regard to the distal tarsal 1, namely: (0) presence of the distal tarsal 1, plesiomorphic; Astylosterninae, Arthroleptinae, Arthroleptella, Cacosternum, Strongylopus, Piychadena, Rana (African species), and Hemisus; (1) absence of the distal tarsal 1 in free form (it can be absent or fused to the element Y), apomorphic; Phrynobatrachidae, Abrana, Aubria, Hylarana, Tomopterna, Pyxicephalus, and Hyperoliinae.

Owing to the fact that Drewes (1984) did not illustrate his observations, it is difficult to interpret his results, as even analyses carned out on the same species give different results The present writer considers that the unfused condition of distal tarsals 3 and 2 which Drewes (1984) attributes to the Hyperoliinae is not exact, and that what the latter interprets as the distal tarsal 2 (as opposed to the interpretation he gives for Ranoidae) is the distal tarsal 1 of the present work. With regard to the absence of the distal tarsal I in Aubria and the Phrynobatrachidae, this would also seem to be an error; according to observations made in the present work, only two species of Phrynobatrachus lack a free distal tarsal 1. In the Hyperohinae, as well as in the Astylosterninae, Arthroleptinae, Ranidae, Phrynobatrachıdae and Hemusotidae, the distal tarsal I is present. The only notable difference with regard to this element is that in Aubria and the Phrynobatrachidae it is proportionally much smaller than the distal tarsal $3-2$ and the element Y. These results lead to the interpretation - identical to that of Laurent (1940, 1941a-b, 1942) - that the fusion of the distal tarsals 3 and 2 is a widely distributed condition, as is the presence of the distal tarsal 1 Only Cardioglossa among the ranoids exhibits a clearly plesiomorphic condition with respect to the tarsus. In the remainder of the Arthroleptinae, as well as in the Astylosterninae, Hyperoliinae, Ranidae, Phrynobatrachidae and Hemisotıdae analyzed, the condition of the tarsus is denved from that of Cardioglossa by fusion of the distal tarsals 3 and 2. The state observed in Phynobaurachus asper, P. naralonsis and Chiromantis rufescens, where the distal tarsal I is absent, probably due to fusion with the element Y as observed in the development of Rama catesbesana (Howes \& Ridewood, 1888), would in turn derive from the foregoing state.

With regard to the structure of the prehallux, an interspecific variation in the number of elements it contained was observed. Although only a small number of specimens were analyzed for each species, from information supplied by other authors (Howes \& Ridewood, 1888; ANDERSEN, 1978) it is probable that this structure also varies intraspecifically with relation to sex and age. However, the absence of a prehallux in Pipoidea, which shows a highly specialized tarsal structure, could also be considered an apomorphy.

Conclusions

(1) On the basss of an analysis of the hund limb ontogeny, it can be suggested that the plesiomorphic condition of the anuran tarsus is shown by the presence of the tibiale and fibulare fused at the ends, three free distal tarsals (3,2 and 1), the element Y and the prehallux.
(2) The apomorphic states result from the fusion of proximal and/or distal tarsal elements, or from reduction of distal elements.
(3) The Pipordea show the greatest complexity and spectaluzation in their tarsal structure. In these forms the typical tarsal elements are replaced by others.

Resumen

Se analiza la estructura del tarso en especimenes adultos y secuencias larvales de diferentes familias de anuros con el propósito de establecer un panorama global de ta diversidad de este carácter en el grupo. El análisis de la ontogenia permite confirmar la hipótesis del origen de los tarsales distales y metatarsales a partir del eje fibular, mientras que el elemento Y y el prehallux se orignan del eje tibial, sin diferenciación de intermedio y centrales Sobre las bases de la información ontogenética, se puede establecer que la condición plesiomórfica del tarso en los anuros es aquella en la que los extremos del tibial y fibular se encuentran fusionados, y existen tres tarsales distales libres, el elemento Y y el prehallux. Los estados apomórficos pueden ser reconocidos por diferentes tipos de fusión entre los elementos proximales y distales, o por la reducción de los elementos distales.

Acknowledgements

The present work was carried out thanks to the support provided by the Consejo Nacional de Investıgaciones Cientificas y Técncas (Argentına), through its Proyecto de Investigación y Desarrollo 3-005600/83. The Fundación Miguel Lallo and Dr Raymond F Laurent provided the specimens analyzed. Dr. Raymond F Laurent and Dr Gustavo Scrocchi provided some very apt comments and observations on the text Omar Pagaburo provided assistance in the field.

LITERATURE CITED

Andersen, M. L., 1978. - The comparative myology and ostoology of the carpus and tarsus of selected anurans, Lawrence, Kansas, Ph. Dissertation: 1-302
Drewes, R, 1984. - A phylogenetic analysis of the Hyperolidae (Anura): treefrogs of Africa, Madagascar and Seychelles Islands. Occ. Pap. Calf. Acad. Sci., 139: 1-70.
Dubors. A 1988 - Miscellanea nomenclatonca batrachologica (XVII). Alytes, 7 (1): 1-5.
---- 1992. Notes sur la classification des Ranidae (Amphbiens Anoures). Bull. Soc. imn, Lyon, 61 (10): 305-352.

Duellman, W. E. \& Trueb, L., 1985. - Bhology of amphibuans. New York, McGraw-Hill: i-xix + 1-670.
Dufllman, W. E. \& Wiens, J. J., 1992. - The status of the hylid frog genus Ololygon and the recognition of Scmax Wagler, 1830. Occ. Pap. Mus nat Hist Untv. Kansas, 151: 1-23.
Gollmann, G., 1991. - Ostcological variation in Geocrinia laevis, Geocrinia victoriana and their hybrid populations (Amphibua, Anura, Myobatrachnae). Z zool Syst. Evol.-Forsch, 29: 289-303.
Gosner, K., 1960. - A simplified table for staging anurans embryos and larvae, with notes on identification. Herpetologica, 16: 183-190
Holmgren, N., 1933. On the origin of the tetrapod limb. Acta Zool Stockh., 14: 185-295.
Howes, G. B. \&f Ridewood, R., 1888. - On the carpus and tarsus of Anura. Proc. zool Soc. Lond., 1888 141-180
Jarosova, J., 1974. - The components of the tarsus in Paleobatrachus and their development in related recent species. Acta Univ. Carolnoe - Geol, 1: 119-144.
Laurint, R F., 1940. - Contribution a l'ostéologie et à la systématique des Ranides afncams. Première note. Rev. Zool. Bot. afr, 34 (1): 76-96.
...-. 1941a - Contribution à l'ostéologe et à la systématique des Ranides afncans. Deuxième note. Rev. Zool. Bot. aff., 34 (2): 192-234.
----- 1941b. - Contrnbution à l'ostéologe et à la systématıque des Rhacophorides africains Première note, Rev. Zool. Bot, afr., 34 (1): 85-111.
...-. 1944 - Contribution à l'ostéologle et à la systématique des Rhacophorides africatns, Deuxième note. Rev. Zool. Bot. afr., 38 (1-2): 149-167.
---- 1986. - Sous-classe des Lissamphibiens (Lissamphibia). Systématıque. In: P. P Grasse \& M Delsol (eds.), Trairé de zoologke, 14, Batractens, Fascicule I-B, Parıs, Masson: 594-797.
Liem, S. S., 1970. - The morphology, systematics and evolution of the Old World treefrogs (Rhacophoridac and Hyperohidac). Fieldsaha: Zool., 55: 1-145.
Lynch, J. D., 1973. - The transition from archaic to advanced frogs. In J L. Vial (ed), Evolutonary biology of the anurans, Columbia, Univ. Missouri Press: 133-182
Shubin, N. \& Alberch, P., 1986. A morphogenetic approach on the ongin and basic organization of the tetrapod limb. Evol. Btol., 20: 319-387.
Talayera, R. 1985 Notas sobre la ontogena de las esjecializaciones locomotoras del tazso de Pelodyles pumetatus (Anura), Bull, Soc. cat. Ictio. Heyp., 10: 27-31.
Trueb, L., 1973. Bones, frogs and evolution in J L. Vial (ed), Evolufionary biology of the anurans, Columbia, Unıv, Missouri Press: 65-132.
Wassersug, R., 1976. A procedure for differential staining of cartilage and bone in whole formaline fixed vertebrates. Stain Tech., 51. 131-134

Correspanding editor. Alain Dubors

Appendix

List of specimens examined

FML: Fundación Miguel Lillo, Tucumán.
REL: personal collection of Raymond F. LaURENT, Tucumán
MCN: Museo de Ciencias Naturales, Universidad Nacional de Salta.
Staging of larvae is according to Gosner (1960).
Family Arthrol eptidae (= Hyperoliddae sensu Laurent, 1986).
Subfamily Arthroleptinae. - Arihrolepis adolfifriedericr; RFL 90c (3 specimens); Arihrolepuis poccionotus: RFL 232h (2 specimens); Arthroleptis stenodactytus: RFL 1086 (1 specimen), Arthroleptis varabitis: RFL 143 (1 specimen); Cardoglossa cyaneospila: RFL 66a (2 specmens), Cardioglossa leucomystax: RFL 170 (2 specimens), Schoutedenefla pyrthorcelis: RFL 121 (4 specimens); Schoutedenella schubotit, RFL 175 b (4 specimens); Schoutedenella sy/watica: RFL 169 b (2 specimens), RFL 43b (2 spectmens),

Subfammly Astycosterninae Astylosternus diadematus' FML 03215 (2 specimens).
Subfamily Hyperolinae. - Afruxahis laevs: RFL l6g (1 specimen), RFL 92a (1 specmen); Afrixalus osorsoi. RFL 4 (2 specimens), RFL 74 (2 specmens); Afruxalus quadrivitatus: RFL 44b (2 specimens); Hyperohns castanens: RFL 54c (9 specimens); Hyperolius marmoratus argentovitfis: RFL 101fg (2 specimens); Kassma senegalensis angell RFL 158 g (1 specimen); Kassma senegalensis ruandae: RFL 273 (2 specimens); Leptopelts christys: RFL 135 (4 specimens), FML 3988 (1 specimen), FML 3987 (1 specimen), Opsthorhylax sp : RFL s/n.; Ph/ycimantis verrucosus: RFL 816 (3 specimens), RFL 87 (3 specimens)

Famdly Bufonidae - Aielopus pachyrhinus: FML 3496 (1 specimen), Bufo granulosus: FML 4408 (1 specimen). Melonophrynsiscus r. rubriventris: FML 2502 (1 specimen), FML 1484 (1 specimen)

Family Dendrobatioak. - Dendrobates prous: FML 3516 (I specimen)
Family Hemisotidae, - Hemisus g. guineensss: FML 1244 (1 specimen).
Famuly Hylidae - Argenteohyla siemerse FML 3954 (2 specimens); Gasfrofheca gracils. FML 2995 (1 specimen), FML 3816 (1 specimen); Hyla minuta FML 4282 (1 specimen), Hyla nana: FML 4352 (I specimen), Hyla puichella amama. FML 3812 (I specimen), FML 4585 (16 tadpoles, stages 33-42), Phylfomeduszt hyporhondralss. FML 0452 (2 specimens), Phyllomedusa sauvagii: FML 3822 (1 specimen), FML 3823 (I specimen), FML 4090-4091 (30 tadpoles, stages 32-42): Scmax nasica: FML 3810 (2 specimens); FML 4407 (1 specimen).

Famuly Leiopelmatidae. Ascaphus truei: FML \sin (2 tadpoles, stages 39 and 42).
Family Leptodactylidae - Eleutherodactylus discoidalis: FML 0462 (2 specimens), FML 4405 (2 specimens); Hylodes nasus FML 3498 (1 specimen); Leptodacrylus chaquenss: FML 4406 (1 specimen), FML 4537 (6 tadpoles, stages 37-42); Leptodactylus elenae: FML 1274 (1 specımen), Leptoductylus fuscus FML 1470 (1 specimen), FML 3887 (1 specımen), Leplodactylus gracilis: FML 2984 (1 specimen): Leptodactylus cf. gracilis MCN 21 (25 tadpoles, stages 32-40); Leptodactylut podicipinus FML 4411 (1 specimen), FML 4412 (1 specmen); Odontophrynus americamus: FML 1376 (1 specimen), FML 4525 (12 tadpoles, stages 35-42); Odontophryhus davilat: FML 3580 (2 specimens), FML, 4499 (12 tadpoles, stages 33-39), Odontophrynus occidentalis FML 1336 (2 specimens); Physalutmus bihgontgerus; FML 1887 (1 specmmen), FML 3930 (2 specimens), FML 1893 (2 specımens), FML 3824 (1 specimen), FML 4409 (1 specımen); Physaldemus santafeczmus. FML 0937 (2 specmens); Pleurodema cinerear. FML 3785 (3 specimens), Syryopus nivicolmae' FML 1274 (1 specimen).

Family Microifylidaf - Breviceps mossambachs: FML 3166 (l specimen); Breviceps poweyi FML 3165 (1 specimen), Dermatonotus muelleri FML 1074 (1 specimen), FML 4571 (15 tadpoles, stages

32-42), Elachistocless bicolor: FML 0251 (1 specimen), FML 4031 (1 specrmen), Gastrophryne carohnensis: FML 3365 (1 spectmen); Gastrophryne ohvacea' FML 2384 (1 specimen); Phrynomantis bifasciatus: RFL 368 (3 specimens)

Family Myobarrachibae, - Crmaa sggnfera: FML 3778 (1 specimen); Limnodynastes fasmaniensis: FML 3773 (2 specimens); Neobatrachus puctus: FML 3777 (I specimen).

Famuly Pelooytidae. - Pelodytes punctatus. FML 3940 (1 specimen),
Family Pipidae. - Hymehochurus boeltgeri camerunensts RFL 205b (4 specumens); Pipa carvalhoi' FML 2307 (1 specimen); Pipa parva FML 2856 (1 specimen), Xenopus fraserr RFL 186 (3 specimens); Xenopus taevis victorianus' RFL 343 (3 specimens); Xenopus sp. FML 3984 (1 specimen). FML 3985 (3 specimens), FML 3986 (3 specittrens).

Family PseupidaE. Lysapsus l. lamellus. FML 0716 (1 specimen), Pseudis paradoxa' FML 1055 (1 specimen), FML 3825 (1 specimen).

Epifamily Ranoidae (sensu Dubois, 1992).
Family Phrynobatrachidae. - Phrynobatrachus acuutrostris' RFL C1 (2 specimens), Phrynobatrachus asper RFL C18 (1 specimen), RFL C5 (2 specmens), Phrynobatrachus dendrobates RFL C10 (2 specimens). Phrynobatrachus natalensis: RFL 438 (2 specmens); Phrynobatrachus petropedetodies: RFL C6 (2 specimens), Phrynobatrachus sulfureogularis: RFL 346 (2 specimens); Phrynobatrachus versicolor: RFL 430 (2 specmens).

Family Ranidae
Subfamily Dicroglossinae Conraua crassipes RFL 246 (2 specimens); Hoplobairachus occiptats: RFL 348 (1 specimen).

Subfamily Ptychadeninae. - Ptychadena aequiphicata RFL 59 (1 specimen); Ptychadena chrisiyi. RFL 76 (1 specimen); Ptychadena chrysogaster. RFL 141 (I specmen), RFL 143 (1 specimen), FML 3947 (1 specimen), FML 3949 (1 specimen); Ptychadpa guiber. RFL 163 (1 specimen), FML 3952 (1 specımen), FML 3953 (1 specımen); Ptychadena mascarentensıs bzbron: RFL CI6 (2 specimens), Ptychadena m mascareniensis RFL 120 (2 specamens), RFL 123 (1 specimen), RFL 124 (1 specimen), FML 3950 (2 specmens); Ptychadena perreth. RFL 72 (1 specimen), RFL 99 (1 specimen); Plychadena porossssuma: RFL Cr1 (2 specimens); Ptychadena uzungwensss: RFL 157 (1) specimen)

Subfamily Pyxicephalinae. Aubria subsgallata RFL 209 (2 specimens), RFL 212 (1 specımen)

Subfamily Rhacophorinae. - Chromantis rufescens RFL 382c (2 specimens).
Family Rhinodermatidae. - Rhinoderma darwimi: FML 3694 (1 specimen)

[^0]: 1. Correspondence to: Castla Correo 577, 4400 Salta, Argentma.
